Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Nitric Oxide ; 136-137: 1-7, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2319499

RESUMEN

BACKGROUND: Impairment of ventilation and perfusion (V/Q) matching is a common mechanism leading to hypoxemia in patients with acute respiratory failure requiring intensive care unit (ICU) admission. While ventilation has been thoroughly investigated, little progress has been made to monitor pulmonary perfusion at the bedside and treat impaired blood distribution. The study aimed to assess real-time changes in regional pulmonary perfusion in response to a therapeutic intervention. METHODS: Single-center prospective study that enrolled adult patients with ARDS caused by SARS-Cov-2 who were sedated, paralyzed, and mechanically ventilated. The distribution of pulmonary perfusion was assessed through electrical impedance tomography (EIT) after the injection of a 10-ml bolus of hypertonic saline. The therapeutic intervention consisted in the administration of inhaled nitric oxide (iNO), as rescue therapy for refractory hypoxemia. Each patient underwent two 15-min steps at 0 and 20 ppm iNO, respectively. At each step, respiratory, gas exchange, and hemodynamic parameters were recorded, and V/Q distribution was measured, with unchanged ventilatory settings. RESULTS: Ten 65 [56-75] years old patients with moderate (40%) and severe (60%) ARDS were studied 10 [4-20] days after intubation. Gas exchange improved at 20 ppm iNO (PaO2/FiO2 from 86 ± 16 to 110 ± 30 mmHg, p = 0.001; venous admixture from 51 ± 8 to 45 ± 7%, p = 0.0045; dead space from 29 ± 8 to 25 ± 6%, p = 0.008). The respiratory system's elastic properties and ventilation distribution were unaltered by iNO. Hemodynamics did not change after gas initiation (cardiac output 7.6 ± 1.9 vs. 7.7 ± 1.9 L/min, p = 0.66). The EIT pixel perfusion maps showed a variety of patterns of changes in pulmonary blood flow, whose increase positively correlated with PaO2/FiO2 increase (R2 = 0.50, p = 0.049). CONCLUSIONS: The assessment of lung perfusion is feasible at the bedside and blood distribution can be modulated with effects that are visualized in vivo. These findings might lay the foundations for testing new therapies aimed at optimizing the regional perfusion in the lungs.


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , Insuficiencia Respiratoria , Adulto , Humanos , Persona de Mediana Edad , Anciano , Circulación Pulmonar , Estudios Prospectivos , Intercambio Gaseoso Pulmonar , COVID-19/complicaciones , SARS-CoV-2 , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Síndrome de Dificultad Respiratoria/etiología , Óxido Nítrico , Hipoxia , Insuficiencia Respiratoria/tratamiento farmacológico , Administración por Inhalación
2.
J Aerosol Med Pulm Drug Deliv ; 36(3): 112-126, 2023 06.
Artículo en Inglés | MEDLINE | ID: covidwho-2302395

RESUMEN

Acute respiratory distress syndrome (ARDS) is a life-threatening condition, characterized by diffuse inflammatory lung injury. Since the coronavirus disease 2019 (COVID-19) pandemic spread worldwide, the most common cause of ARDS has been the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Both the COVID-19-associated ARDS and the ARDS related to other causes-also defined as classical ARDS-are burdened by high mortality and morbidity. For these reasons, effective therapeutic interventions are urgently needed. Among them, inhaled nitric oxide (iNO) has been studied in patients with ARDS since 1993 and it is currently under investigation. In this review, we aim at describing the biological and pharmacological rationale of iNO treatment in ARDS by elucidating similarities and differences between classical and COVID-19 ARDS. Thereafter, we present the available evidence on the use of iNO in clinical practice in both types of respiratory failure. Overall, iNO seems a promising agent as it could improve the ventilation/perfusion mismatch, gas exchange impairment, and right ventricular failure, which are reported in ARDS. In addition, iNO may act as a viricidal agent and prevent lung hyperinflammation and thrombosis of the pulmonary vasculature in the specific setting of COVID-19 ARDS. However, the current evidence on the effects of iNO on outcomes is limited and clinical studies are yet to demonstrate any survival benefit by administering iNO in ARDS.


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , Humanos , Óxido Nítrico , Administración por Inhalación , SARS-CoV-2 , Síndrome de Dificultad Respiratoria/tratamiento farmacológico
3.
J Clin Med ; 12(4)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: covidwho-2225419

RESUMEN

(1) The use of high-flow nasal cannula (HFNC) combined with frequent respiratory monitoring in patients with acute hypoxic respiratory failure due to COVID-19 has been shown to reduce intubation and mechanical ventilation. (2) This prospective, single-center, observational study included consecutive adult patients with COVID-19 pneumonia treated with a high-flow nasal cannula. Hemodynamic parameters, respiratory rate, inspiratory fraction of oxygen (FiO2), saturation of oxygen (SpO2), and the ratio of oxygen saturation to respiratory rate (ROX) were recorded prior to treatment initiation and every 2 h for 24 h. A 6-month follow-up questionnaire was also conducted. (3) Over the study period, 153 of 187 patients were eligible for HFNC. Of these patients, 80% required intubation and 37% of the intubated patients died in hospital. Male sex (OR = 4.65; 95% CI [1.28; 20.6], p = 0.03) and higher BMI (OR = 2.63; 95% CI [1.14; 6.76], p = 0.03) were associated with an increased risk for new limitations at 6-months after hospital discharge. (4) 20% of patients who received HFNC did not require intubation and were discharged alive from the hospital. Male sex and higher BMI were associated with poor long-term functional outcomes.

4.
PLoS One ; 18(1): e0279643, 2023.
Artículo en Inglés | MEDLINE | ID: covidwho-2197115

RESUMEN

The COVID-19 pandemic has caused tremendous disruptions to non-COVID-19 clinical research. However, there has been little investigation on how patients themselves have responded to clinical trial recruitment during the COVID-19 pandemic. To investigate the effect of the COVID-19 pandemic on rates of patient consent to enrollment into non-COVID-19 clinical trials, we carried out a cross-sectional study using data from the Nitric Oxide/Acute Kidney Injury (NO/AKI) and Minimizing ICU Neurological Dysfunction with Dexmedetomidine-Induced Sleep (MINDDS) trials. All patients eligible for the NO/AKI or MINDDS trials who came to the hospital for cardiac surgery and were approached to gain consent to enrollment were included in the current study. We defined "Before COVID-19" as the time between the start of the relevant clinical trial and the date when efforts toward that clinical trial were deescalated by the hospital due to COVID-19. We defined "During COVID-19" as the time between trial de-escalation and trial completion. 5,015 patients were screened for eligibility. 3,851 were excluded, and 1,434 were approached to gain consent to enrollment. The rate of consent to enrollment was 64% in the "Before COVID-19" group and 45% in the "During COVID-19" group (n = 1,334, P<0.001) (RR = 0.70, 95% CI 0.62 to 0.80, P<0.001). Thus, we found that rates of consent to enrollment into the NO/AKI and MINDDS trials dropped significantly with the onset of the COVID-19 pandemic. Patient demographic and socioeconomic status data collected from electronic medical records and patient survey data did not shed light on possible explanations for this observed drop, indicating that there were likely other factors at play that were not directly measured in the current study. Increased patient hesitancy to enroll in clinical trials can have detrimental effects on clinical science, patient health, and patient healthcare experience, so understanding and addressing this issue during the COVID-19 pandemic is crucial.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Pandemias , Estudios Transversales , Pacientes , Factores de Tiempo
5.
American Journal of Respiratory and Critical Care Medicine ; 202(1):16, 2020.
Artículo en Inglés | ProQuest Central | ID: covidwho-2098100

RESUMEN

Alvarez et al discuss a case study on home nitric oxide therapy for COVID-19. Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a range of cardiopulmonary and vascular complications, ranging from upper respiratory tract symptoms to severe acute respiratory distress syndrome (ARDS), as well as shock, acute kidney injury, and thromboembolic complications. Zamanian and colleagues present an interesting and compelling case of a patient with pulmonary arterial hypertension (PAH) who was treated remotely in an ambulatory setting with inhaled nitric oxide (iNO) (5). This patient with well-controlled vasoreactive PAH lived in a remote area more than 300 miles away from their center and experienced symptoms of worsening breathlessness after being diagnosed with COVID-19.

6.
Obstet Gynecol ; 140(2): 195-203, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2029090

RESUMEN

OBJECTIVE: To evaluate whether the use of inhaled nitric oxide (iNO)200 improves respiratory function. METHODS: This retrospective cohort study used data from pregnant patients hospitalized with severe bilateral coronavirus disease 2019 (COVID-19) pneumonia at four teaching hospitals between March 2020 and December 2021. Two cohorts were identified: 1) those receiving standard of care alone (SoC cohort) and 2) those receiving iNO200 for 30 minutes twice daily in addition to standard of care alone (iNO200 cohort). Inhaled nitric oxide, as a novel therapy, was offered only at one hospital. The prespecified primary outcome was days free from any oxygen supplementation at 28 days postadmission. Secondary outcomes were hospital length of stay, rate of intubation, and intensive care unit (ICU) length of stay. The multivariable-adjusted regression analyses accounted for age, body mass index, gestational age, use of steroids, remdesivir, and the study center. RESULTS: Seventy-one pregnant patients were hospitalized for severe bilateral COVID-19 pneumonia: 51 in the SoC cohort and 20 in the iNO200 cohort. Patients receiving iNO200 had more oxygen supplementation-free days (iNO200: median [interquartile range], 24 [23-26] days vs standard of care alone: 22 [14-24] days, P=.01) compared with patients in the SoC cohort. In the multivariable-adjusted analyses, iNO200 was associated with 63.2% (95% CI 36.2-95.4%; P<.001) more days free from oxygen supplementation, 59.7% (95% CI 56.0-63.2%; P<.001) shorter ICU length of stay, and 63.6% (95% CI 55.1-70.8%; P<.001) shorter hospital length of stay. No iNO200-related adverse events were reported. CONCLUSION: In pregnant patients with severe bilateral COVID-19 pneumonia, iNO200 was associated with a reduced need for oxygen supplementation and shorter hospital stay.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Femenino , Humanos , Óxido Nítrico , Oxígeno , Embarazo , Estudios Retrospectivos , SARS-CoV-2
7.
Ann Thorac Surg ; 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1944290

RESUMEN

BACKGROUND: The effect of hospital-associated SARS-CoV-2 infections in cardiac surgery patients remains poorly investigated, and current data are limited to small case series with conflicting results. METHODS: A multicenter European collaboration was organized to analyze the outcomes of patients who tested positive with hospital-associated SARS-CoV-2 infection after cardiac surgery. The study investigators hypothesized that early infection could be associated with worse postoperative outcomes; hence 2 groups were considered: (1) an early hospital-associated SARS-CoV-2 infection group comprising patients who had a positive molecular test result ≤7 days after surgery, with or without symptoms; and (2) a late hospital-associated SARS-CoV-2 infection group comprising patients whose test positivity occurred >7 days after surgery, with or without symptoms. The primary outcome was 30-day mortality. Secondary outcomes included all-cause mortality or morbidity at early follow-up and SARS-CoV-2-related hospital readmission. RESULTS: A total of 87 patients were included in the study. Of those, 30 were in the early group and 57 in the late group. Overall, 30-day mortality was 8%, and in-hospital mortality was 11.5%. The reintubation rate was 11.4%. Early infection was significantly associated with higher mortality (adjusted OR, 26.6; 95% CI, 2, 352.6; P < .01) when compared with the late group. At 6-month follow-up, survival probability was also significantly higher in the late infection group: 91% (95% CI, 83%, 98%) vs 75% (95% CI, 61%, 93%) in the early infection group (P = .036). Two patients experienced COVID-19-related rehospitalization. CONCLUSIONS: In this multicenter analysis, hospital-associated SARS-CoV-2 infection resulted in higher than expected postoperative mortality after cardiac surgery, especially in the early infection group.

8.
Intensive Care Med Exp ; 10(1): 28, 2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: covidwho-1910362

RESUMEN

Nitric oxide (NO) is a key molecule in the biology of human life. NO is involved in the physiology of organ viability and in the pathophysiology of organ dysfunction, respectively. In this narrative review, we aimed at elucidating the mechanisms behind the role of NO in the respiratory and cardio-cerebrovascular systems, in the presence of a healthy or dysfunctional endothelium. NO is a key player in maintaining multiorgan viability with adequate organ blood perfusion. We report on its physiological endogenous production and effects in the circulation and within the lungs, as well as the pathophysiological implication of its disturbances related to NO depletion and excess. The review covers from preclinical information about endogenous NO produced by nitric oxide synthase (NOS) to the potential therapeutic role of exogenous NO (inhaled nitric oxide, iNO). Moreover, the importance of NO in several clinical conditions in critically ill patients such as hypoxemia, pulmonary hypertension, hemolysis, cerebrovascular events and ischemia-reperfusion syndrome is evaluated in preclinical and clinical settings. Accordingly, the mechanism behind the beneficial iNO treatment in hypoxemia and pulmonary hypertension is investigated. Furthermore, investigating the pathophysiology of brain injury, cardiopulmonary bypass, and red blood cell and artificial hemoglobin transfusion provides a focus on the potential role of NO as a protective molecule in multiorgan dysfunction. Finally, the preclinical toxicology of iNO and the antimicrobial role of NO-including its recent investigation on its role against the Sars-CoV2 infection during the COVID-19 pandemic-are described.

10.
Am J Emerg Med ; 58: 5-8, 2022 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1819420

RESUMEN

BACKGROUND: Inhaled nitric oxide (iNO) is a selective pulmonary vasodilator and mild bronchodilator that has been shown to improve systemic oxygenation, but has rarely been administered in the Emergency Department (ED). In addition to its favorable pulmonary vascular effects, in-vitro studies report that NO donors can inhibit replication of viruses, including SARS Coronavirus 2 (SARS-CoV-2). This study evaluated the administration of high-dose iNO by mask in spontaneously breathing emergency department (ED) patients with respiratory symptoms attributed to Coronavirus disease 2019 (COVID-19). METHODS: We designed a randomized clinical trial to determine whether 30 min of high dose iNO (250 ppm) could be safely and practically administered by emergency physicians in the ED to spontaneously-breathing patients with respiratory symptoms attributed to COVID-19. Our secondary goal was to learn if iNO could prevent the progression of mild COVID-19 to a more severe state. FINDINGS: We enrolled 47 ED patients with acute respiratory symptoms most likely due to COVID-19: 25 of 47 (53%) were randomized to the iNO treatment group; 22 of 47 (46%) to the control group (supportive care only). All patients tolerated the administration of high-dose iNO in the ED without significant complications or symptoms. Five patients receiving iNO (16%) experienced asymptomatic methemoglobinemia (MetHb) > 5%. Thirty-four of 47 (72%) subjects tested positive for SARS-CoV-2: 19 of 34 were randomized to the iNO treatment group and 15 of 34 subjects to the control group. Seven of 19 (38%) iNO patients returned to the ED, while 4 of 15 (27%) control patients did. One patient in each study arm was hospitalized: 5% in iNO treatment and 7% in controls. One patient was intubated in the iNO group. No patients in either group died. The differences between these groups were not significant. CONCLUSION: A single dose of iNO at 250 ppm was practical and not associated with any significant adverse effects when administered in the ED by emergency physicians. Local disease control led to early study closure and prevented complete testing of COVID-19 safety and treatment outcomes measures.


Asunto(s)
COVID-19 , Insuficiencia Respiratoria , Administración por Inhalación , Servicio de Urgencia en Hospital , Humanos , Óxido Nítrico/uso terapéutico , Insuficiencia Respiratoria/terapia , SARS-CoV-2
11.
Curr Opin Crit Care ; 28(3): 292-301, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1816323

RESUMEN

PURPOSE OF REVIEW: Electrical impedance tomography (EIT) is a novel, noninvasive, radiation-free, bedside imaging and monitoring tool to assess and visualize regional distribution of lung ventilation and perfusion. Although primarily a research tool, rapidly emerging data are beginning to define its clinical role, and it is poised to become a ubiquitous addition to the arsenal of the intensive care unit (ICU). In this review, we summarize the data supporting clinical use of EIT in adult ICUs, with an emphasis on appropriate application while highlighting future directions. RECENT FINDINGS: Recent major studies have primarily focused on the role of EIT in setting correct positive end-expiratory pressure to balance regional overdistention and collapse. Over the last few years, our Lung Rescue Team has demonstrated that incorporating EIT into a multimodal approach to individualizing ventilator management can improve outcomes, particularly in the obese. We also review recent data surrounding EIT use during COVID, as well as other broad potential applications. SUMMARY: As EIT becomes more common and its clinical role more defined, intensivists will benefit from a clear understanding of its applications and limitations.


Asunto(s)
COVID-19 , Tomografía , Adulto , Impedancia Eléctrica , Humanos , Unidades de Cuidados Intensivos , Monitoreo Fisiológico/métodos , Tomografía/métodos
13.
Biomedicines ; 10(2)2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1674493

RESUMEN

The global COVID-19 pandemic has become the largest public health challenge of recent years. The incidence of COVID-19-related acute hypoxemic respiratory failure (AHRF) occurs in up to 15% of hospitalized patients. Antiviral drugs currently available to clinicians have little to no effect on mortality, length of in-hospital stay, the need for mechanical ventilation, or long-term effects. Inhaled nitric oxide (iNO) administration is a promising new non-standard approach to directly treat viral burden while enhancing oxygenation. Along with its putative antiviral affect in COVID-19 patients, iNO can reduce inflammatory cell-mediated lung injury by inhibiting neutrophil activation, lowering pulmonary vascular resistance and decreasing edema in the alveolar spaces, collectively enhancing ventilation/perfusion matching. This narrative review article presents recent literature on the iNO therapy use for COVID-19 patients. The authors suggest that early administration of the iNO therapy may be a safe and promising approach for the treatment of COVID-19 patients. The authors also discuss unconventional approaches to treatment, continuous versus intermittent high-dose iNO therapy, timing of initiation of therapy (early versus late), and novel delivery systems. Future laboratory and clinical research is required to define the role of iNO as an adjunct therapy against bacterial, viral, and fungal infections.

14.
Nitric Oxide ; 121: 20-33, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1665319

RESUMEN

Inhaled nitric oxide (iNO) acts as a selective pulmonary vasodilator and it is currently approved by the FDA for the treatment of persistent pulmonary hypertension of the newborn. iNO has been demonstrated to effectively decrease pulmonary artery pressure and improve oxygenation, while decreasing extracorporeal life support use in hypoxic newborns affected by persistent pulmonary hypertension. Also, iNO seems a safe treatment with limited side effects. Despite the promising beneficial effects of NO in the preclinical literature, there is still a lack of high quality evidence for the use of iNO in clinical settings. A variety of clinical applications have been suggested in and out of the critical care environment, aiming to use iNO in respiratory failure and pulmonary hypertension of adults or as a preventative measure of hemolysis-induced vasoconstriction, ischemia/reperfusion injury and as a potential treatment of renal failure associated with cardiopulmonary bypass. In this narrative review we aim to present a comprehensive summary of the potential use of iNO in several clinical conditions with its suggested benefits, including its recent application in the scenario of the COVID-19 pandemic. Randomized controlled trials, meta-analyses, guidelines, observational studies and case-series were reported and the main findings summarized. Furthermore, we will describe the toxicity profile of NO and discuss an innovative proposed strategy to produce iNO. Overall, iNO exhibits a wide range of potential clinical benefits, that certainly warrants further efforts with randomized clinical trials to determine specific therapeutic roles of iNO.


Asunto(s)
Enfermedad Crítica , Hipertensión Pulmonar/tratamiento farmacológico , Enfermedades del Recién Nacido/tratamiento farmacológico , Óxido Nítrico/uso terapéutico , Vasodilatadores/uso terapéutico , Adulto , COVID-19/complicaciones , COVID-19/virología , Humanos , Hipertensión Pulmonar/etiología , Recién Nacido , Enfermedades del Recién Nacido/etiología , Óxido Nítrico/farmacología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/aislamiento & purificación , Vasodilatadores/farmacología , Tratamiento Farmacológico de COVID-19
15.
Respir Care ; 67(2): 201-208, 2022 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1497588

RESUMEN

BACKGROUND: High-dose (≥ 80 ppm) inhaled nitric oxide (INO) has antimicrobial effects. We designed a trial to test the preventive effects of high-dose NO on coronavirus disease 2019 (COVID-19) in health care providers working with patients with COVID-19. The study was interrupted prematurely due to the introduction of COVID-19 vaccines for health care professionals. We thereby present data on safety and feasibility of breathing 160 ppm NO using 2 different NO sources, namely pressurized nitrogen/NO cylinders (INO) and electric NO (eNO) generators. METHODS: NO gas was inhaled at 160 ppm in air for 15 min twice daily, before and after each work shift, over 14 d by health care providers (NCT04312243). During NO administration, vital signs were continuously monitored. Safety was assessed by measuring transcutaneous methemoglobinemia (SpMet) and the inhaled nitrogen dioxide (NO2) concentration. RESULTS: Twelve healthy health care professionals received a collective total of 185 administrations of high-dose NO (160 ppm) for 15 min twice daily. One-hundred and seventy-one doses were delivered by INO and 14 doses by eNO. During NO administration, SpMet increased similarly in both groups (P = .82). Methemoglobin decreased in all subjects at 5 min after discontinuing NO administration. Inhaled NO2 concentrations remained between 0.70 ppm (0.63-0.79) and 0.75 ppm (0.67-0.83) in the INO group and between 0.74 ppm (0.68-0.78) and 0.88 ppm (0.70-0.93) in the eNO group. During NO administration, peripheral oxygen saturation and heart rate did not change. No adverse events occurred. CONCLUSIONS: This pilot study testing high-dose INO (160 ppm) for 15 min twice daily using eNO seems feasible and similarly safe when compared with INO.


Asunto(s)
COVID-19 , Óxido Nítrico , Administración por Inhalación , Vacunas contra la COVID-19 , Humanos , Saturación de Oxígeno , Proyectos Piloto , SARS-CoV-2
16.
Am J Respir Crit Care Med ; 203(5): 575-584, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1452989

RESUMEN

Rationale: Obesity is characterized by elevated pleural pressure (Ppl) and worsening atelectasis during mechanical ventilation in patients with acute respiratory distress syndrome (ARDS).Objectives: To determine the effects of a lung recruitment maneuver (LRM) in the presence of elevated Ppl on hemodynamics, left and right ventricular pressure, and pulmonary vascular resistance. We hypothesized that elevated Ppl protects the cardiovascular system against high airway pressure and prevents lung overdistension.Methods: First, an interventional crossover trial in adult subjects with ARDS and a body mass index ≥ 35 kg/m2 (n = 21) was performed to explore the hemodynamic consequences of the LRM. Second, cardiovascular function was studied during low and high positive end-expiratory pressure (PEEP) in a model of swine with ARDS and high Ppl (n = 9) versus healthy swine with normal Ppl (n = 6).Measurements and Main Results: Subjects with ARDS and obesity (body mass index = 57 ± 12 kg/m2) after LRM required an increase in PEEP of 8 (95% confidence interval [95% CI], 7-10) cm H2O above traditional ARDS Network settings to improve lung function, oxygenation and [Formula: see text]/[Formula: see text] matching, without impairment of hemodynamics or right heart function. ARDS swine with high Ppl demonstrated unchanged transmural left ventricular pressure and systemic blood pressure after the LRM protocol. Pulmonary arterial hypertension decreased (8 [95% CI, 13-4] mm Hg), as did vascular resistance (1.5 [95% CI, 2.2-0.9] Wood units) and transmural right ventricular pressure (10 [95% CI, 15-6] mm Hg) during exhalation. LRM and PEEP decreased pulmonary vascular resistance and normalized the [Formula: see text]/[Formula: see text] ratio.Conclusions: High airway pressure is required to recruit lung atelectasis in patients with ARDS and class III obesity but causes minimal overdistension. In addition, patients with ARDS and class III obesity hemodynamically tolerate LRM with high airway pressure.Clinical trial registered with www.clinicaltrials.gov (NCT02503241).


Asunto(s)
Atelectasia Pulmonar , Síndrome de Dificultad Respiratoria , Choque , Animales , Hemodinámica/fisiología , Humanos , Obesidad/complicaciones , Respiración con Presión Positiva/métodos , Síndrome de Dificultad Respiratoria/terapia , Porcinos
17.
Nitric Oxide ; 116: 7-13, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1356375

RESUMEN

BACKGROUND: Inhaled nitric oxide (NO) is a selective pulmonary vasodilator. In-vitro studies report that NO donors can inhibit replication of SARS-CoV-2. This multicenter study evaluated the feasibility and effects of high-dose inhaled NO in non-intubated spontaneously breathing patients with Coronavirus disease-2019 (COVID-19). METHODS: This is an interventional study to determine whether NO at 160 parts-per-million (ppm) inhaled for 30 min twice daily might be beneficial and safe in non-intubated COVID-19 patients. RESULTS: Twenty-nine COVID-19 patients received a total of 217 intermittent inhaled NO treatments for 30 min at 160 ppm between March and June 2020. Breathing NO acutely decreased the respiratory rate of tachypneic patients and improved oxygenation in hypoxemic patients. The maximum level of nitrogen dioxide delivered was 1.5 ppm. The maximum level of methemoglobin (MetHb) during the treatments was 4.7%. MetHb decreased in all patients 5 min after discontinuing NO administration. No adverse events during treatment, such as hypoxemia, hypotension, or acute kidney injury during hospitalization occurred. In our NO treated patients, one patient of 29 underwent intubation and mechanical ventilation, and none died. The median hospital length of stay was 6 days [interquartile range 4-8]. No discharged patients required hospital readmission nor developed COVID-19 related long-term sequelae within 28 days of follow-up. CONCLUSIONS: In spontaneous breathing patients with COVID-19, the administration of inhaled NO at 160 ppm for 30 min twice daily promptly improved the respiratory rate of tachypneic patients and systemic oxygenation of hypoxemic patients. No adverse events were observed. None of the subjects was readmitted or had long-term COVID-19 sequelae.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Hospitalización , Óxido Nítrico/administración & dosificación , Neumonía Viral/tratamiento farmacológico , Respiración/efectos de los fármacos , Administración por Inhalación , COVID-19/complicaciones , COVID-19/virología , Relación Dosis-Respuesta a Droga , Humanos , Óxido Nítrico/farmacología , Óxido Nítrico/uso terapéutico , Neumonía Viral/complicaciones
18.
Crit Care Explor ; 3(7): e0461, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: covidwho-1301383

RESUMEN

OBJECTIVE: To investigate whether individualized optimization of mechanical ventilation through the implementation of a lung rescue team could reduce the need for venovenous extracorporeal membrane oxygenation in patients with obesity and acute respiratory distress syndrome and decrease ICU and hospital length of stay and mortality. DESIGN: Single-center, retrospective study at the Massachusetts General Hospital from June 2015 to June 2019. PATIENTS: All patients with obesity and acute respiratory distress syndrome who were referred for venovenous extracorporeal membrane oxygenation evaluation due to hypoxemic respiratory failure. INTERVENTION: Evaluation and individualized optimization of mechanical ventilation by the lung rescue team before the decision to proceed with venovenous extracorporeal membrane oxygenation. The control group was those patients managed according to hospital standard of care without lung rescue team evaluation. MEASUREMENT AND MAIN RESULTS: All 20 patients (100%) allocated in the control group received venovenous extracorporeal membrane oxygenation, whereas 10 of 13 patients (77%) evaluated by the lung rescue team did not receive venovenous extracorporeal membrane oxygenation. Patients who underwent lung rescue team evaluation had a shorter duration of mechanical ventilation (p = 0.03) and shorter ICU length of stay (p = 0.03). There were no differences between groups in in-hospital, 30-day, or 1-year mortality. CONCLUSIONS: In this hypothesis-generating study, individualized optimization of mechanical ventilation of patients with acute respiratory distress syndrome and obesity by a lung rescue team was associated with a decrease in the utilization of venovenous extracorporeal membrane oxygenation, duration of mechanical ventilation, and ICU length of stay. Mortality was not modified by the lung rescue team intervention.

19.
J Clin Med ; 10(13)2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1295865

RESUMEN

Hypoxemia of the acute respiratory distress syndrome can be reduced by turning patients prone. Prone positioning (PP) is labor intensive, risks unplanned tracheal extubation, and can result in facial tissue injury. We retrospectively examined prolonged, repeated, and early versus later PP for 20 patients with COVID-19 respiratory failure. Blood gases and ventilator settings were collected before PP, at 1, 7, 12, 24, 32, and 39 h after PP, and 7 h after completion of PP. Analysis of variance was used for comparisons with baseline values at supine positions before turning prone. PP for >39 h maintained PaO2/FiO2 (P/F) ratios when turned supine; the P/F decrease at 7 h was not significant from the initial values when turned supine. Patients turned prone a second time, when again turned supine at 7 h, had significant decreased P/F. When PP started for an initial P/F ≤ 150 versus P/F > 150, the P/F increased throughout the PP and upon return to supine. Our results show that a single turn prone for >39 h is efficacious and saves the burden of multiple prone turns, and there is no significant advantage to initiating PP when P/F > 150 compared to P/F ≤ 150.

20.
Crit Care Explor ; 3(6): e0471, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: covidwho-1276252

RESUMEN

IMPORTANCE: Prone positioning improves clinical outcomes in moderate-to-severe acute respiratory distress syndrome and has been widely adopted for the treatment of patients with acute respiratory distress syndrome due to coronavirus disease 2019. Little is known about the effects of prone positioning among patients with less severe acute respiratory distress syndrome, obesity, or those treated with pulmonary vasodilators. OBJECTIVES: We characterize the change in oxygenation, respiratory system compliance, and dead-space-to-tidal-volume ratio in response to prone positioning in patients with coronavirus disease 2019 acute respiratory distress syndrome with a range of severities. A subset analysis of patients treated with inhaled nitric oxide and subsequent prone positioning explored the influence of pulmonary vasodilation on the physiology of prone positioning. DESIGN SETTING AND PARTICIPANTS: Retrospective cohort study of all consecutively admitted adult patients with acute respiratory distress syndrome due to coronavirus disease 2019 treated with mechanical ventilation and prone positioning in the ICUs of an academic hospital between March 11, 2020, and May 1, 2020. MAIN OUTCOMES AND MEASURES: Respiratory system mechanics and gas exchange during the first episode of prone positioning. RESULTS: Among 122 patients, median (interquartile range) age was 60 years (51-71 yr), median body mass index was 31.5 kg/m2 (27-35 kg/m2), and 50 patients (41%) were female. The ratio of Pao2 to Fio2 improved with prone positioning in 90% of patients. Prone positioning was associated with a significant increase in the ratio of Pao2 to Fio2 (from median 149 [123-170] to 226 [169-268], p < 0.001) but no change in dead-space-to-tidal-volume ratio or respiratory system compliance. Supine ratio of Pao2 to Fio2, respiratory system compliance, positive end-expiratory pressure, and body mass index did not correlate with absolute change in the ratio of Pao2 to Fio2 with prone positioning. However, patients with ratio of Pao2 to Fio2 less than 150 experienced a greater relative improvement in oxygenation with prone positioning than patients with ratio of Pao2 to Fio2 greater than or equal to 150 (median percent change in ratio of Pao2 to Fio2 62 [29-107] vs 30 [10-70], p = 0.002). Among 12 patients, inhaled nitric oxide prior to prone positioning was associated with a significant increase in the ratio of Pao2 to Fio2 (from median 136 [77-168] to 170 [138-213], p = 0.003) and decrease in dead-space-to-tidal-volume ratio (0.54 [0.49-0.58] to 0.46 [0.44-0.53], p = 0.001). Subsequent prone positioning in this subgroup further improved the ratio of Pao2 to Fio2 (from 145 [122-183] to 205 [150-232], p = 0.017) but did not change dead-space-to-tidal-volume ratio. CONCLUSIONS AND RELEVANCE: Prone positioning improves oxygenation across the acute respiratory distress syndrome severity spectrum, irrespective of supine respiratory system compliance, positive end-expiratory pressure, or body mass index. There was a greater relative benefit among patients with more severe disease. Prone positioning confers an additive benefit in oxygenation among patients treated with inhaled nitric oxide.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA